Heat.net

Heat.net Store Home


Bardahl Oil - Aircraft & Automobile Advertising Dealer Book - Letters RARE 1940s For Sale


Bardahl Oil - Aircraft & Automobile Advertising Dealer Book - Letters RARE 1940s
When you click on links to various merchants on this site and make a purchase, this can result in this site earning a commission. Affiliate programs and affiliations include, but are not limited to, the eBay Partner Network.

Buy Now

Bardahl Oil - Aircraft & Automobile Advertising Dealer Book - Letters RARE 1940s:
$134.00

RARE Advertising Dealer Book
EARLY - Bardahl Oil
Aircraft & Automobile
Letters, etc.
ca 1940s

For offer - a very nice old advertising Book / booklet. Fresh from an estate in Upstate NY. Never offered on the market until now. Vintage, Old, antique, Original - NOT a Reproduction - Guaranteed !!Bardahl Oil Company - Seattle, Washington; St. Louis, Missouri; Vancouver, Canada; Montreal. Unusual, early, rare piece of the Company\'s history. From local distributor / dealer, Bardahl of Western New York, Brockport, NY - Near Rochester / Batavia. Advertising at beginning of book, and the rest is customer and scientific testimonials talking about the advantages of Bardahl. 42 pages (21 leaves). Dates from 1940s. Green manilla type covers. In good to very good condition. Some age toning to covers, with small rip to edge of front cover - nothing too major. Please see photos. If you collect oil / gas company, 20th century motor, American history,etc., this is a nice one for your paper or ephemera collection. Combine shipping on multiple offer wins! 1284




Bardahl is a brand of petroleum oil additives, lubricants and gasoline additives for motor vehicles and internal combustion engines made by Bardahl Manufacturing Corporation in Seattle, Washington.


Ole Bardahl[edit]

Bardahl Oil Company was founded in 1939 by Ole Bardahl (January 28, 1902–August 11, 1989), a Norwegian immigrant to the United States. Ole Bardahl arrived in Seattle in 1922 with $29 in his pocket. He became a millionaire by the age of 39 as a general contractor in Seattle, building homes. After that, he founded the Bardahl Oil Company in the Ballard neighborhood of Seattle. The company is still owned and managed by the Bardahl family.


1950s[edit]

Its original factories were located in Ballard. In the mid-1950s, Bardahl was the leading brand of motor oil and oil additives in the United States. Bardahl\'s oil additive was advertised during the 1950s in magazines and animated TV commercials which showed the product\'s effectiveness in combating engine problems such as \"Dirty Sludge\", \"Sticky Valves,\" \"Gummy Rings,\" and \"Blackie Carbon,\" all of which were anthropomorphized in the commercials.


1960s[edit]

In the early 1960s York Research Corporation, an independent commercial testing laboratory of Glenbrook, Connecticut conducted controlled testing on Bardahl. As the result of those tests, York President Warren C. Hyer was featured in regional and national Bardahl television advertisements touting the benefits of Bardahl as an oil additive. For many years the York Research company seal could be found on all cans of Bardahl.


Miss Bardahl[edit]

The company remains prominent as a result of its sponsorship of motor sports competitors. The Miss Bardahl Hydroplane was a six time National Champion and five time Gold Cup winner, racing in the United States from 1957 to 1969.


Today[when?][edit]

Bardahl can be found in more than 90 countries. The Bardahl product line includes 250 products, including engine oils, motor oil and fuel additives, and specialty lubricants. The company has expanded to foreign markets, opening plants in countries such as France, Belgium, Italy, Argentina, Brazil and Singapore.


Sponsorships[edit]

Bardahl has been involved in racing, using events as proving grounds for its products, as well as for the new technologies produced by the company\'s research and development arm. Types included Unlimited Hydroplanes, offshore powerboats, unlimited air racing, IndyCars, CART Racing, NASCAR, motorcycle and snowmobile racing. Al Young\'s Bardahl sponsored World Championship winning 1970 Dodge Challenger is part of the Museum of History and Industry (MOHAI) artifact collection in Seattle, WA. Formula 1 drivers such as Fangio, Guerney and Fittipaldi are associated with the Bardahl brand. Bardhal products were often given away as promotional products to studio audience members or contestants on The Gong Show


OEM recognition[edit]

Bardahl has network of distributors in 90 countries under brands such as Bardahl and Protex by Bardahl. Formulations meet or exceed OEM Top Tier Performance requirements for the automotive industry: Audi - BMW - Chrysler - Citroen - Ferrari - Fiat - Ford - GM - Honda - Hyundai - Mazda - Mercedes - Mitsubishi - Peugeot - Porsche - Renault - Volkswagen



Petroleum products are materials derived from crude oil (petroleum) as it is processed in oil refineries. Unlike petrochemicals, which are a collection of well-defined usually pure chemical compounds, petroleum products are complex mixtures. The majority of petroleum is converted to petroleum products, which includes several classes of fuels.[1]


According to the composition of the crude oil and depending on the demands of the market, refineries can produce different shares of petroleum products. The largest share of oil products is used as \"energy carriers\", i.e. various grades of fuel oil and gasoline. These fuels include or can be blended to give gasoline, jet fuel, diesel fuel, heating oil, and heavier fuel oils. Heavier (less volatile) fractions can also be used to produce asphalt, tar, paraffin wax, lubricating and other heavy oils. Refineries also produce other chemicals, some of which are used in chemical processes to produce plastics and other useful materials. Since petroleum often contains a few percent sulfur-containing molecules, elemental sulfur is also often produced as a petroleum product. Carbon, in the form of petroleum coke, and hydrogen may also be produced as petroleum products. The hydrogen produced is often used as an intermediate product for other oil refinery processes such as hydrocracking and hydrodesulfurization.



Specialty and products[edit]


A breakdown of the products made from a typical barrel of US oil.[2]

Oil refineries will blend various feedstocks, mix appropriate additives, provide short term storage, and prepare for bulk loading to trucks, barges, product ships, and railcars.


Gaseous fuels such as propane, stored and shipped in liquid form under pressure in specialized railcars to distributors.

Liquid fuels blending (producing automotive and aviation grades of gasoline, kerosene, various aviation turbine fuels, and diesel fuels, adding dyes, detergents, antiknock additives, oxygenates, and anti-fungal compounds as required). Shipped by barge, rail, and tanker ship. May be shipped regionally in dedicated pipelines to point consumers, particularly aviation jet fuel to major airports, or piped to distributors in multi-product pipelines using product separators called pipeline inspection gauges (\"pigs\").

Lubricants (produces light machine oils, motor oils, and greases, adding viscosity stabilizers as required), usually shipped in bulk to an offsite packaging plant.

Paraffin wax, used in the packaging of frozen foods, among others. May be shipped in bulk to a site to prepare as packaged blocks.

Slack wax, a raw refinery output comprising a mixture of oil and wax used as a precursor for scale wax and paraffin wax and as-is in non-food products such as wax emulsions, construction board, matches, candles, rust protection, and vapor barriers.

Sulfur, byproduct of sulfur removal from petroleum, which contain percent of organosulfur compounds.

Bulk tar shipping for offsite unit packaging for use in tar-and-gravel roofing or similar uses.

Asphalt - used as a binder for gravel to form asphalt concrete, which is used for paving roads, lots, etc. An asphalt unit prepares bulk asphalt for shipment.

Petroleum coke, used in specialty carbon products such as certain types of electrodes, or as solid fuel.

Petrochemicals or petrochemical feedstocks. Petrochemical are organic compounds that are the ingredients for the chemical industry, ranging from polymers and pharmaceuticals. Representative petrochemicals are ethylene and benzene-toluene-xylenes (\"BTX\").

O2


Petroleum by-products[edit]

Over 6,000 items are made from petroleum waste by-products including: fertilizer, floor coverings, perfume, insecticide, petroleum jelly, soap, vitamin capsules. See link to partial list of 144 by-products listed by Ranken Energy [3]




Petroleum (from Ancient Greek: petra: \"rock\" + oleum: \"oil\"[1][2][3][4][5][6]) is a naturally occurring, yellow-to-black liquid found in geological formations beneath the Earth\'s surface. It is commonly refined into various types of fuels. Components of petroleum are separated using a technique called fractional distillation i.e. separation of a liquid mixture into fractions differing in boiling point by means of distillation, typically using a fractionating column.


It consists of hydrocarbons of various molecular weights and other organic compounds.[7] The name petroleum covers both naturally occurring unprocessed crude oil and petroleum products that are made up of refined crude oil. A fossil fuel, petroleum is formed when large quantities of dead organisms, usually zooplankton and algae, are buried underneath sedimentary rock and subjected to both intense heat and pressure.


Petroleum has mostly been recovered by oil drilling (natural petroleum springs are rare). Drilling is carried out after studies of structural geology (at the reservoir scale), sedimentary basin analysis, and reservoir characterisation (mainly in terms of the porosity and permeability of geologic reservoir structures) have been completed.[8][9] It is refined and separated, most easily by distillation, into a large number of consumer products, from gasoline (petrol) and kerosene to asphalt and chemical reagents used to make plastics and pharmaceuticals.[10] Petroleum is used in manufacturing a wide variety of materials,[11] and it is estimated that the world consumes about 95 million barrels each day.


Concern over the depletion of the earth\'s finite reserves of oil, and the effect this would have on a society dependent on it, is a concept known as peak oil. The use of fossil fuels, such as petroleum, has a negative impact on Earth\'s biosphere, damaging ecosystems through events such as oil spills and releasing a range of pollutants into the air including ground-level ozone and sulfur dioxide from sulfur impurities in fossil fuels. The burning of fossil fuels plays a major role in the current episode of global warming.


Etymology[edit]


Fractional distillation apparatus

The word petroleum comes from Ancient Greek: πέτρα, translit. petra for rocks and Ancient Greek: ἔλαιον, translit. elaion for oil. The term was found (in the spelling \"petraoleum\") in 10th-century Old English sources.[12] It was used in the treatise De Natura Fossilium, published in 1546 by the German mineralogist Georg Bauer, also known as Georgius Agricola.[13] In the 19th century, the term petroleum was often used to refer to mineral oils produced by distillation from mined organic solids such as cannel coal (and later oil shale), and refined oils produced from them; in the United Kingdom, storage (and later transport) of these oils were regulated by a series of Petroleum Acts, from the Petroleum Act 1863 onwards.


History[edit]

Main article: History of the petroleum industry

Early history[edit]


Oil derrick in Okemah, Oklahoma, 1922

Petroleum, in one form or another, has been used since ancient times, and is now important across society, including in economy, politics and technology. The rise in importance was due to the invention of the internal combustion engine, the rise in commercial aviation, and the importance of petroleum to industrial organic chemistry, particularly the synthesis of plastics, fertilisers, solvents, adhesives and pesticides.


More than 4000 years ago, according to Herodotus and Diodorus Siculus, asphalt was used in the construction of the walls and towers of Babylon; there were oil pits near Ardericca (near Babylon), and a pitch spring on Zacynthus.[14] Great quantities of it were found on the banks of the river Issus, one of the tributaries of the Euphrates. Ancient Persian tablets indicate the medicinal and lighting uses of petroleum in the upper levels of their society.


The use of petroleum dates back to ancient China more than 2000 years ago. In I Ching, one of the earliest Chinese writings cites the use of oil in its raw state without refining was first discovered, extracted, and used in China in the first century BCE. In addition, the Chinese were the first to use petroleum as fuel as the early as the fourth century BCE.[15][16][17][18]


By 347 AD, oil was produced from bamboo-drilled wells in China.[19][20] Early British explorers to Myanmar documented a flourishing oil extraction industry based in Yenangyaung that, in 1795, had hundreds of hand-dug wells under production.[21]


Pechelbronn (Pitch fountain) is said to be the first European site where petroleum has been explored and used. The still active Erdpechquelle, a spring where petroleum appears mixed with water has been used since 1498, e.g. for medical purposes. Oil sands have been mined since the 18th century.[22]


In Wietze in lower Saxony, natural asphalt/bitumen has been explored since the 18th century.[23] Both in Pechelbronn as in Wietze, the coal industry dominated the petroleum technologies.[24]


Modern history[edit]

Chemist James Young noticed a natural petroleum seepage in the Riddings colliery at Alfreton, Derbyshire from which he distilled a light thin oil suitable for use as lamp oil, at the same time obtaining a thicker oil suitable for lubricating machinery. In 1848 Young set up a small business refining the crude oil.


Young eventually succeeded, by distilling cannel coal at a low heat, in creating a fluid resembling petroleum, which when treated in the same way as the seep oil gave similar products. Young found that by slow distillation he could obtain a number of useful liquids from it, one of which he named \"paraffine oil\" because at low temperatures it congealed into a substance resembling paraffin wax.[25]


The production of these oils and solid paraffin wax from coal formed the subject of his patent dated 17 October 1850. In 1850 Young & Meldrum and Edward William Binney entered into partnership under the title of E.W. Binney & Co. at Bathgate in West Lothian and E. Meldrum & Co. at Glasgow; their works at Bathgate were completed in 1851 and became the first truly commercial oil-works in the world with the first modern oil refinery, using oil extracted from locally mined torbanite, shale, and bituminous coal to manufacture naphtha and lubricating oils; paraffin for fuel use and solid paraffin were not sold until 1856.[26]



Shale bings near Broxburn, 3 of a total of 19 in West Lothian

The world\'s first oil refinery was built in 1856 by Ignacy Łukasiewicz.[27] His achievements also included the discovery of how to distill kerosene from seep oil, the invention of the modern kerosene lamp (1853), the introduction of the first modern street lamp in Europe (1853), and the construction of the world\'s first modern oil well (1854).[28]


The demand for petroleum as a fuel for lighting in North America and around the world quickly grew.[29] Edwin Drake\'s 1859 well near Titusville, Pennsylvania, is popularly considered the first modern well. Already 1858 Georg Christian Konrad Hunäus had found a significant amount of petroleum while drilling for lignite 1858 in Wietze, Germany. Wietze later provided about 80% of the German consumption in the Wilhelminian Era.[30] The production stopped in 1963, but Wietze has hosted a Petroleum Museum since 1970.[31]


Drake\'s well is probably singled out because it was drilled, not dug; because it used a steam engine; because there was a company associated with it; and because it touched off a major boom.[32] However, there was considerable activity before Drake in various parts of the world in the mid-19th century. A group directed by Major Alexeyev of the Bakinskii Corps of Mining Engineers hand-drilled a well in the Baku region in 1848.[33] There were engine-drilled wells in West Virginia in the same year as Drake\'s well.[34] An early commercial well was hand dug in Poland in 1853, and another in nearby Romania in 1857. At around the same time the world\'s first, small, oil refinery was opened at Jasło in Poland, with a larger one opened at Ploiești in Romania shortly after. Romania is the first country in the world to have had its annual crude oil output officially recorded in international statistics: 275 tonnes for 1857.[35][36]


The first commercial oil well in Canada became operational in 1858 at Oil Springs, Ontario (then Canada West).[37] Businessman James Miller Williams dug several wells between 1855 and 1858 before discovering a rich reserve of oil four metres below ground.[38] Williams extracted 1.5 million litres of crude oil by 1860, refining much of it into kerosene lamp oil.[37] Williams\'s well became commercially viable a year before Drake\'s Pennsylvania operation and could be argued to be the first commercial oil well in North America.[37] The discovery at Oil Springs touched off an oil boom which brought hundreds of speculators and workers to the area. Advances in drilling continued into 1862 when local driller Shaw reached a depth of 62 metres using the spring-pole drilling method.[39] On January 16, 1862, after an explosion of natural gas Canada\'s first oil gusher came into production, shooting into the air at a recorded rate of 3,000 barrels per day.[40] By the end of the 19th century the Russian Empire, particularly the Branobel company in Azerbaijan, had taken the lead in production.[41]


Access to oil was and still is a major factor in several military conflicts of the twentieth century, including World War II, during which oil facilities were a major strategic asset and were extensively bombed.[42] The German invasion of the Soviet Union included the goal to capture the Baku oilfields, as it would provide much needed oil-supplies for the German military which was suffering from blockades.[43] Oil exploration in North America during the early 20th century later led to the US becoming the leading producer by mid-century. As petroleum production in the US peaked during the 1960s, however, the United States was surpassed by Saudi Arabia and the Soviet Union.


Today, about 90 percent of vehicular fuel needs are met by oil. Petroleum also makes up 40 percent of total energy consumption in the United States, but is responsible for only 1 percent of electricity generation.[44] Petroleum\'s worth as a portable, dense energy source powering the vast majority of vehicles and as the base of many industrial chemicals makes it one of the world\'s most important commodities. Viability of the oil commodity is controlled by several key parameters, number of vehicles in the world competing for fuel, quantity of oil exported to the world market (Export Land Model), Net Energy Gain (economically useful energy provided minus energy consumed), political stability of oil exporting nations and ability to defend oil supply lines.


The top three oil producing countries are Russia, Saudi Arabia and the United States.[45] About 80 percent of the world\'s readily accessible reserves are located in the Middle East, with 62.5 percent coming from the Arab 5: Saudi Arabia, UAE, Iraq, Qatar and Kuwait. A large portion of the world\'s total oil exists as unconventional sources, such as bitumen in Canada and extra heavy oil in Venezuela. While significant volumes of oil are extracted from oil sands, particularly in Canada, logistical and technical hurdles remain, as oil extraction requires large amounts of heat and water, making its net energy content quite low relative to conventional crude oil. Thus, Canada\'s oil sands are not expected to provide more than a few million barrels per day in the foreseeable future.


Composition[edit]

In its strictest sense, petroleum includes only crude oil, but in common usage it includes all liquid, gaseous and solid hydrocarbons. Under surface pressure and temperature conditions, lighter hydrocarbons methane, ethane, propane and butane occur as gases, while pentane and heavier hydrocarbons are in the form of liquids or solids. However, in an underground oil reservoir the proportions of gas, liquid, and solid depend on subsurface conditions and on the phase diagram of the petroleum mixture.[46]


An oil well produces predominantly crude oil, with some natural gas dissolved in it. Because the pressure is lower at the surface than underground, some of the gas will come out of solution and be recovered (or burned) as associated gas or solution gas. A gas well produces predominantly natural gas. However, because the underground temperature and pressure are higher than at the surface, the gas may contain heavier hydrocarbons such as pentane, hexane, and heptane in the gaseous state. At surface conditions these will condense out of the gas to form \"natural gas condensate\", often shortened to condensate. Condensate resembles gasoline in appearance and is similar in composition to some volatile light crude oils.


The proportion of light hydrocarbons in the petroleum mixture varies greatly among different oil fields, ranging from as much as 97 percent by weight in the lighter oils to as little as 50 percent in the heavier oils and bitumens.


The hydrocarbons in crude oil are mostly alkanes, cycloalkanes and various aromatic hydrocarbons, while the other organic compounds contain nitrogen, oxygen and sulfur, and trace amounts of metals such as iron, nickel, copper and vanadium. Many oil reservoirs contain live bacteria.[47] The exact molecular composition of crude oil varies widely from formation to formation but the proportion of chemical elements varies over fairly narrow limits as follows:[48]


Crude oil varies greatly in appearance depending on its composition. It is usually black or dark brown (although it may be yellowish, reddish, or even greenish). In the reservoir it is usually found in association with natural gas, which being lighter forms a \"gas cap\" over the petroleum, and saline water which, being heavier than most forms of crude oil, generally sinks beneath it. Crude oil may also be found in a semi-solid form mixed with sand and water, as in the Athabasca oil sands in Canada, where it is usually referred to as crude bitumen. In Canada, bitumen is considered a sticky, black, tar-like form of crude oil which is so thick and heavy that it must be heated or diluted before it will flow.[50] Venezuela also has large amounts of oil in the Orinoco oil sands, although the hydrocarbons trapped in them are more fluid than in Canada and are usually called extra heavy oil. These oil sands resources are called unconventional oil to distinguish them from oil which can be extracted using traditional oil well methods. Between them, Canada and Venezuela contain an estimated 3.6 trillion barrels (570×109 m3) of bitumen and extra-heavy oil, about twice the volume of the world\'s reserves of conventional oil.[51]


Petroleum is used mostly, by volume, for producing fuel oil and gasoline, both important \"primary energy\" sources. 84 percent by volume of the hydrocarbons present in petroleum is converted into energy-rich fuels (petroleum-based fuels), including gasoline, diesel, jet, heating, and other fuel oils, and liquefied petroleum gas.[52] The lighter grades of crude oil produce the best yields of these products, but as the world\'s reserves of light and medium oil are depleted, oil refineries are increasingly having to process heavy oil and bitumen, and use more complex and expensive methods to produce the products required. Because heavier crude oils have too much carbon and not enough hydrogen, these processes generally involve removing carbon from or adding hydrogen to the molecules, and using fluid catalytic cracking to convert the longer, more complex molecules in the oil to the shorter, simpler ones in the fuels.


Due to its high energy density, easy transportability and relative abundance, oil has become the world\'s most important source of energy since the mid-1950s. Petroleum is also the raw material for many chemical products, including pharmaceuticals, solvents, fertilizers, pesticides, and plastics; the 16 percent not used for energy production is converted into these other materials. Petroleum is found in porous rock formations in the upper strata of some areas of the Earth\'s crust. There is also petroleum in oil sands (tar sands). Known oil reserves are typically estimated at around 190 km3 (1.2 trillion (short scale) barrels) without oil sands,[53] or 595 km3 (3.74 trillion barrels) with oil sands.[54] Consumption is currently around 84 million barrels (13.4×106 m3) per day, or 4.9 km3 per year, yielding a remaining oil supply of only about 120 years, if current demand remains static.


Chemistry[edit]


Octane, a hydrocarbon found in petroleum. Lines represent single bonds; black spheres represent carbon; white spheres represent hydrogen.

Petroleum is a mixture of a very large number of different hydrocarbons; the most commonly found molecules are alkanes (paraffins), cycloalkanes (naphthenes), aromatic hydrocarbons, or more complicated chemicals like asphaltenes. Each petroleum variety has a unique mix of molecules, which define its physical and chemical properties, like color and viscosity.


The alkanes, also known as paraffins, are saturated hydrocarbons with straight or branched chains which contain only carbon and hydrogen and have the general formula CnH2n+2. They generally have from 5 to 40 carbon atoms per molecule, although trace amounts of shorter or longer molecules may be present in the mixture.


The alkanes from pentane (C5H12) to octane (C8H18) are refined into gasoline, the ones from nonane (C9H20) to hexadecane (C16H34) into diesel fuel, kerosene and jet fuel. Alkanes with more than 16 carbon atoms can be refined into fuel oil and lubricating oil. At the heavier end of the range, paraffin wax is an alkane with approximately 25 carbon atoms, while asphalt has 35 and up, although these are usually cracked by modern refineries into more valuable products. The shortest molecules, those with four or fewer carbon atoms, are in a gaseous state at room temperature. They are the petroleum gases. Depending on demand and the cost of recovery, these gases are either flared off, sold as liquefied petroleum gas under pressure, or used to power the refinery\'s own burners. During the winter, butane (C4H10), is blended into the gasoline pool at high rates, because its high vapor pressure assists with cold starts. Liquified under pressure slightly above atmospheric, it is best known for powering cigarette lighters, but it is also a main fuel source for many developing countries. Propane can be liquified under modest pressure, and is consumed for just about every application relying on petroleum for energy, from cooking to heating to transportation.


The cycloalkanes, also known as naphthenes, are saturated hydrocarbons which have one or more carbon rings to which hydrogen atoms are attached according to the formula CnH2n. Cycloalkanes have similar properties to alkanes but have higher boiling points.


The aromatic hydrocarbons are unsaturated hydrocarbons which have one or more planar six-carbon rings called benzene rings, to which hydrogen atoms are attached with the formula CnH2n-6. They tend to burn with a sooty flame, and many have a sweet aroma. Some are carcinogenic.


These different molecules are separated by fractional distillation at an oil refinery to produce gasoline, jet fuel, kerosene, and other hydrocarbons. For example, 2,2,4-trimethylpentane (isooctane), widely used in gasoline, has a chemical formula of C8H18 and it reacts with oxygen exothermically:[55]


2 C

8H

18(l) + 25 O

2(g) → 16 CO

2(g) + 18 H

2O(g) (ΔH = −5.51 MJ/mol of octane)

The number of various molecules in an oil sample can be determined by laboratory analysis. The molecules are typically extracted in a solvent, then separated in a gas chromatograph, and finally determined with a suitable detector, such as a flame ionization detector or a mass spectrometer.[56] Due to the large number of co-eluted hydrocarbons within oil, many cannot be resolved by traditional gas chromatography and typically appear as a hump in the chromatogram. This unresolved complex mixture (UCM) of hydrocarbons is particularly apparent when analysing weathered oils and extracts from tissues of organisms exposed to oil. Some of the component of oil will mix with water: the water associated fraction of the oil.


Incomplete combustion of petroleum or gasoline results in production of toxic byproducts. Too little oxygen during combustion results in the formation of carbon monoxide. Due to the high temperatures and high pressures involved, exhaust gases from gasoline combustion in car engines usually include nitrogen oxides which are responsible for creation of photochemical smog.


Empirical equations for thermal properties[edit]

Heat of combustion[edit]

At a constant volume, the heat of combustion of a petroleum product can be approximated as follows:


{\\displaystyle Q_{v}=12{,}400-2{,}100d^{2}} {\\displaystyle Q_{v}=12{,}400-2{,}100d^{2}},

where {\\displaystyle Q_{v}} Q_{v} is measured in calories per gram and {\\displaystyle d} d is the specific gravity at 60 °F (16 °C).


Thermal conductivity[edit]

The thermal conductivity of petroleum based liquids can be modeled as follows:[57]


{\\displaystyle K={\\frac {1.62}{API}}[1-0.0003(t-32)]} K={\\frac {1.62}{API}}[1-0.0003(t-32)]

where {\\displaystyle K} K is measured in BTU · °F−1hr−1ft−1 , {\\displaystyle t} t is measured in °F and {\\displaystyle API} {\\displaystyle API} is degrees API gravity.


Specific heat[edit]

The specific heat of petroleum oils can be modeled as follows:[58]


{\\displaystyle c={\\frac {1}{d}}[0.388+0.00046t]} c={\\frac {1}{d}}[0.388+0.00046t],

where {\\displaystyle c} c is measured in BTU/(lb °F), {\\displaystyle t} t is the temperature in Fahrenheit and {\\displaystyle d} d is the specific gravity at 60 °F (16 °C).


In units of kcal/(kg·°C), the formula is:


{\\displaystyle c={\\frac {1}{d}}[0.4024+0.00081t]} c={\\frac {1}{d}}[0.4024+0.00081t],

where the temperature {\\displaystyle t} t is in Celsius and {\\displaystyle d} d is the specific gravity at 15 °C.


Latent heat of vaporization[edit]

The latent heat of vaporization can be modeled under atmospheric conditions as follows:


{\\displaystyle L={\\frac {1}{d}}[110.9-0.09t]} L={\\frac {1}{d}}[110.9-0.09t],

where {\\displaystyle L} L is measured in BTU/lb, {\\displaystyle t} t is measured in °F and {\\displaystyle d} d is the specific gravity at 60 °F (16 °C).


In units of kcal/kg, the formula is:


{\\displaystyle L={\\frac {1}{d}}[194.4-0.162t]} L={\\frac {1}{d}}[194.4-0.162t],

where the temperature {\\displaystyle t} t is in Celsius and {\\displaystyle d} d is the specific gravity at 15 °C.[59]


Formation[edit]


Structure of a vanadium porphyrin compound (left) extracted from petroleum by Alfred E. Treibs, father of organic geochemistry. Treibs noted the close structural similarity of this molecule and chlorophyll a (right).[60][61]

Petroleum is a fossil fuel derived from ancient fossilized organic materials, such as zooplankton and algae.[62] Vast quantities of these remains settled to sea or lake bottoms, mixing with sediments and being buried under anoxic conditions (no oxygen). As further layers settled to the sea or lake bed, intense heat and pressure built up in the lower regions. This process caused the organic matter to change, first into a waxy material known as kerogen, found in various oil shales around the world, and then with more heat into liquid and gaseous hydrocarbons via a process known as catagenesis. Formation of petroleum occurs from hydrocarbon pyrolysis in a variety of mainly endothermic reactions at high temperature or pressure, or both.[63]


In certain warm nutrient-rich environments like the Gulf of Mexico and the ancient Tethys Sea, large amounts of organic material fell to the ocean floor faster than it could decompose. This resulted in large masses of organic material being buried under subsequent deposits, such as shale formed from mud. These massive organic deposits later became heated and transformed under pressure into oil.[64]


Geologists often refer to the temperature range in which oil forms as an \"oil window\"[65]—below the minimum temperature oil remains trapped in the form of kerogen. Above the maximum temperature the oil is converted to natural gas through the process of thermal cracking. Sometimes, oil formed at extreme depths may migrate and become trapped at a much shallower level. The Athabasca Oil Sands are one example of this.


An alternative mechanism was proposed by Russian scientists in the mid-1850s, the hypothesis of abiogenic petroleum origin, but this is contradicted by geological and geochemical evidence.[66]


Abiogenic (formed by inorganic means) sources of oil have been found, but never in commercially profitable amounts. \"The controversy isn\'t over whether abiogenic oil reserves exist,\" said Larry Nation of the American Association of Petroleum Geologists. \"The controversy is over how much they contribute to Earth\'s overall reserves and how much time and effort geologists should devote to seeking them out.\"[67]


Reservoirs[edit]

Crude oil reservoirs[edit]


This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (October 2016) (Learn how and when to remove this template message)


Hydrocarbon trap

Three conditions must be present for oil reservoirs to form:


a source rock rich in hydrocarbon material buried deeply enough for subterranean heat to cook it into oil,

a porous and permeable reservoir rock where it can accumulate,

a caprock (seal) or other mechanism to prevent the oil from escaping to the surface. Within these reservoirs, fluids will typically organize themselves like a three-layer cake with a layer of water below the oil layer and a layer of gas above it, although the different layers vary in size between reservoirs. Because most hydrocarbons are less dense than rock or water, they often migrate upward through adjacent rock layers until either reaching the surface or becoming trapped within porous rocks (known as reservoirs) by impermeable rocks above. However, the process is influenced by underground water flows, causing oil to migrate hundreds of kilometres horizontally or even short distances downward before becoming trapped in a reservoir. When hydrocarbons are concentrated in a trap, an oil field forms, from which the liquid can be extracted by drilling and pumping.

The reactions that produce oil and natural gas are often modeled as first order breakdown reactions, where hydrocarbons are broken down to oil and natural gas by a set of parallel reactions, and oil eventually breaks down to natural gas by another set of reactions. The latter set is regularly used in petrochemical plants and oil refineries.


Wells are drilled into oil reservoirs to extract the crude oil. \"Natural lift\" production methods that rely on the natural reservoir pressure to force the oil to the surface are usually sufficient for a while after reservoirs are first tapped. In some reservoirs, such as in the Middle East, the natural pressure is sufficient over a long time. The natural pressure in most reservoirs, however, eventually dissipates. Then the oil must be extracted using \"artificial lift\" means. Over time, these \"primary\" methods become less effective and \"secondary\" production methods may be used. A common secondary method is \"waterflood\" or injection of water into the reservoir to increase pressure and force the oil to the drilled shaft or \"wellbore.\" Eventually \"tertiary\" or \"enhanced\" oil recovery methods may be used to increase the oil\'s flow characteristics by injecting steam, carbon dioxide and other gases or chemicals into the reservoir. In the United States, primary production methods account for less than 40 percent of the oil produced on a daily basis, secondary methods account for about half, and tertiary recovery the remaining 10 percent. Extracting oil (or \"bitumen\") from oil/tar sand and oil shale deposits requires mining the sand or shale and heating it in a vessel or retort, or using \"in-situ\" methods of injecting heated liquids into the deposit and then pumping the liquid back out saturated with oil.


Unconventional oil reservoirs[edit]

See also: Unconventional oil, Oil sands, and Oil shale reserves

Oil-eating bacteria biodegrade oil that has escaped to the surface. Oil sands are reservoirs of partially biodegraded oil still in the process of escaping and being biodegraded, but they contain so much migrating oil that, although most of it has escaped, vast amounts are still present—more than can be found in conventional oil reservoirs. The lighter fractions of the crude oil are destroyed first, resulting in reservoirs containing an extremely heavy form of crude oil, called crude bitumen in Canada, or extra-heavy crude oil in Venezuela. These two countries have the world\'s largest deposits of oil sands.


On the other hand, oil shales are source rocks that have not been exposed to heat or pressure long enough to convert their trapped hydrocarbons into crude oil. Technically speaking, oil shales are not always shales and do not contain oil, but are fined-grain sedimentary rocks containing an insoluble organic solid called kerogen. The kerogen in the rock can be converted into crude oil using heat and pressure to simulate natural processes. The method has been known for centuries and was patented in 1694 under British Crown Patent No. 330 covering, \"A way to extract and make great quantities of pitch, tar, and oil out of a sort of stone.\" Although oil shales are found in many countries, the United States has the world\'s largest deposits.[68]


Classification[edit]


Some marker crudes with their sulfur content (horizontal) and API gravity (vertical) and relative production quantity

See also: Benchmark (crude oil)

The petroleum industry generally classifies crude oil by the geographic location it is produced in (e.g. West Texas Intermediate, Brent, or Oman), its API gravity (an oil industry measure of density), and its sulfur content. Crude oil may be considered light if it has low density or heavy if it has high density; and it may be referred to as sweet if it contains relatively little sulfur or sour if it contains substantial amounts of sulfur.


The geographic location is important because it affects transportation costs to the refinery. Light crude oil is more desirable than heavy oil since it produces a higher yield of gasoline, while sweet oil commands a higher price than sour oil because it has fewer environmental problems and requires less refining to meet sulfur standards imposed on fuels in consuming countries. Each crude oil has unique molecular characteristics which are revealed by the use of Crude oil assay analysis in petroleum laboratories.


Barrels from an area in which the crude oil\'s molecular characteristics have been determined and the oil has been classified are used as pricing references throughout the world. Some of the common reference crudes are:


West Texas Intermediate (WTI), a very high-quality, sweet, light oil delivered at Cushing, Oklahoma for North American oil

Brent Blend, consisting of 15 oils from fields in the Brent and Ninian systems in the East Shetland Basin of the North Sea. The oil is landed at Sullom Voe terminal in Shetland. Oil production from Europe, Africa and Middle Eastern oil flowing West tends to be priced off this oil, which forms a benchmark

Dubai-Oman, used as benchmark for Middle East sour crude oil flowing to the Asia-Pacific region

Tapis (from Malaysia, used as a reference for light Far East oil)

Minas (from Indonesia, used as a reference for heavy Far East oil)

The OPEC Reference Basket, a weighted average of oil blends from various OPEC (The Organization of the Petroleum Exporting Countries) countries

Midway Sunset Heavy, by which heavy oil in California is priced[69]

Western Canadian Select the benchmark crude oil for emerging heavy, high TAN (acidic) crudes.[70]

There are declining amounts of these benchmark oils being produced each year, so other oils are more commonly what is actually delivered. While the reference price may be for West Texas Intermediate delivered at Cushing, the actual oil being traded may be a discounted Canadian heavy oil—Western Canadian Select— delivered at Hardisty, Alberta, and for a Brent Blend delivered at Shetland, it may be a discounted Russian Export Blend delivered at the port of Primorsk.[71]


Petroleum industry[edit]

Ambox current red.svg

This article needs to be updated. Please update this article to reflect recent events or newly available information. (April 2016)

Main article: Petroleum industry


Crude oil export treemap (2012) from Harvard Atlas of Economic Complexity[72]


New York Mercantile Exchange prices ($/bbl) for West Texas Intermediate 2000 through Oct 2014

The petroleum industry is involved in the global processes of exploration, extraction, refining, transporting (often with oil tankers and pipelines), and marketing petroleum products. The largest volume products of the industry are fuel oil and gasoline. Petroleum is also the raw material for many chemical products, including pharmaceuticals, solvents, fertilizers, pesticides, and plastics. The industry is usually divided into three major components: upstream, midstream and downstream. Midstream operations are usually included in the downstream category.


Petroleum is vital to many industries, and is of importance to the maintenance of industrialized civilization itself, and thus is a critical concern to many nations. Oil accounts for a large percentage of the world\'s energy consumption, ranging from a low of 32 percent for Europe and Asia, up to a high of 53 percent for the Middle East, South and Central America (44%), Africa (41%), and North America (40%). The world at large consumes 30 billion barrels (4.8 km³) of oil per year, and the top oil consumers largely consist of developed nations. In fact, 24 percent of the oil consumed in 2004 went to the United States alone,[73] though by 2007 this had dropped to 21 percent of world oil consumed.[74]


In the US, in the states of Arizona, California, Hawaii, Nevada, Oregon and Washington, the Western States Petroleum Association (WSPA) represents companies responsible for producing, distributing, refining, transporting and marketing petroleum. This non-profit trade association was founded in 1907, and is the oldest petroleum trade association in the United States.[75]


Shipping[edit]

In the 1950s, shipping costs made up 33 percent of the price of oil transported from the Persian Gulf to USA,[76] but due to the development of supertankers in the 1970s, the cost of shipping dropped to only 5 percent of the price of Persian oil in USA.[76] Due to the increase of the value of the crude oil during the last 30 years, the share of the shipping cost on the final cost of the delivered commodity was less than 3% in 2010. For example, in 2010 the shipping cost from the Persian Gulf to the USA was in the range of 20 $/t and the cost of the delivered crude oil around 800 $/t.[citation needed]


Price[edit]


Nominal and inflation-adjusted US dollar price of crude oil, 1861–2015

Main article: Price of oil

After the collapse of the OPEC-administered pricing system in 1985, and a short-lived experiment with netback pricing, oil-exporting countries adopted a market-linked pricing mechanism.[77] First adopted by PEMEX in 1986, market-linked pricing was widely accepted, and by 1988 became and still is the main method for pricing crude oil in international trade.[77] The current reference, or pricing markers, are Brent, WTI, and Dubai/Oman.[77]


Uses[edit]

Further information: Petroleum product

The chemical structure of petroleum is heterogeneous, composed of hydrocarbon chains of different lengths. Because of this, petroleum may be taken to oil refineries and the hydrocarbon chemicals separated by distillation and treated by other chemical processes, to be used for a variety of purposes. The total cost of a plant is about 9 billion dollars per plant.


Fuels[edit]


A poster used to promote carpooling as a way to ration gasoline during World War II

The most common distillation fractions of petroleum are fuels. Fuels include (by increasing boiling temperature range):[78]


Common fractions of petroleum as fuels

Fraction Boiling range oC

Liquefied petroleum gas (LPG) −40

Butane −12 to −1

Gasoline −1 to 110

Jet fuel 150 to 205

Kerosene 205 to 260

Fuel oil 205 to 290

Diesel fuel 260 to 315

Petroleum classification according to chemical composition.[79]


Class of petroleum Composition of 250–300 °C fraction,

wt. %

Par. Napth Arom. Wax Asph.

Paraffinic 46—61 22–32 12–25 1.5–10 0–6

Paraffinic-naphtenic 42–45 38–39 16–20 1–6 0–6

Naphthenic 15–26 61–76 8–13 Trace 0–6

Aromatic 0–8 57–78 20–25 0–0.5 0–20

Other derivatives[edit]

Certain types of resultant hydrocarbons may be mixed with other non-hydrocarbons, to create other end products:


Alkenes (olefins), which can be manufactured into plastics or other compounds

Lubricants (produces light machine oils, motor oils, and greases, adding viscosity stabilizers as required)

Wax, used in the packaging of frozen foods, among others

Sulfur or sulfuric acid. These are useful industrial materials. Sulfuric acid is usually prepared as the acid precursor oleum, a byproduct of sulfur removal from fuels.

Bulk tar

Asphalt

Petroleum coke, used in speciality carbon products or as solid fuel

Paraffin wax

Aromatic petrochemicals to be used as precursors in other chemical production

Agriculture[edit]

Since the 1940s, agricultural productivity has increased dramatically, due largely to the increased use of energy-intensive mechanization, fertilizers and pesticides.


Environmental effects[edit]

Main article: Environmental impact of the petroleum industry


Diesel fuel spill on a road

Because petroleum is a naturally occurring substance, its presence in the environment need not be the result of human causes such as accidents and routine activities (seismic exploration, drilling, extraction, refining and combustion). Phenomena such as seeps[88] and tar pits are examples of areas that petroleum affects without man\'s involvement. Regardless of source, petroleum\'s effects when released into the environment are similar.


Ocean acidification[edit]


Seawater acidification

Ocean acidification is the increase in the acidity of the Earth\'s oceans caused by the uptake of carbon dioxide (CO2) from the atmosphere. This increase in acidity inhibits all marine life – having a greater impact on smaller organisms as well as shelled organisms (see scallops).[89]


Global warming[edit]

When burned, petroleum releases carbon dioxide, a greenhouse gas. Along with the burning of coal, petroleum combustion may be the largest contributor to the increase in atmospheric CO2.[citation needed] Atmospheric CO2 has risen over the last 150 years to current levels of over 390 ppmv, from the 180 – 300 ppmv of the prior 800 thousand years[90][91][92] This rise in temperature may have reduced the Arctic ice cap to 1,100,000 sq mi (2,800,000 km2)[citation needed], smaller than ever recorded.[93] Because of this melt, more oil reserves have been revealed. It is estimated by the International Energy Agency that about 13 percent of the world\'s undiscovered oil resides in the Arctic.[94]


Extraction[edit]

Oil extraction is simply the removal of oil from the reservoir (oil pool). Oil is often recovered as a water-in-oil emulsion, and specialty chemicals called demulsifiers are used to separate the oil from water. Oil extraction is costly and sometimes environmentally damaging. Offshore exploration and extraction of oil disturbs the surrounding marine environment.[95]


Oil spills[edit]

Further information: Oil spill and List of oil spills


Kelp after an oil spill


Oil slick from the Montara oil spill in the Timor Sea, September, 2009


Volunteers cleaning up the aftermath of the Prestige oil spill

Crude oil and refined fuel spills from tanker ship accidents have damaged natural ecosystems in Alaska, the Gulf of Mexico, the Galápagos Islands, France and many other places.


The quantity of oil spilled during accidents has ranged from a few hundred tons to several hundred thousand tons (e.g., Deepwater Horizon oil spill, SS Atlantic Empress, Amoco Cadiz). Smaller spills have already proven to have a great impact on ecosystems, such as the Exxon Valdez oil spill.


Oil spills at sea are generally much more damaging than those on land, since they can spread for hundreds of nautical miles in a thin oil slick which can cover beaches with a thin coating of oil. This can kill sea birds, mammals, shellfish and other organisms it coats. Oil spills on land are more readily containable if a makeshift earth dam can be rapidly bulldozed around the spill site before most of the oil escapes, and land animals can avoid the oil more easily.


Control of oil spills is difficult, requires ad hoc methods, and often a large amount of manpower. The dropping of bombs and incendiary devices from aircraft on the SS Torrey Canyon wreck produced poor results;[96] modern techniques would include pumping the oil from the wreck, like in the Prestige oil spill or the Erika oil spill.[97]


Though crude oil is predominantly composed of various hydrocarbons, certain nitrogen heterocylic compounds, such as pyridine, picoline, and quinoline are reported as contaminants associated with crude oil, as well as facilities processing oil shale or coal, and have also been found at legacy wood treatment sites. These compounds have a very high water solubility, and thus tend to dissolve and move with water. Certain naturally occurring bacteria, such as Micrococcus, Arthrobacter, and Rhodococcus have been shown to degrade these contaminants.[98]


Tarballs[edit]

A tarball is a blob of crude oil (not to be confused with tar, which is a man-made product derived from pine trees or refined from petroleum) which has been weathered after floating in the ocean. Tarballs are an aquatic pollutant in most environments, although they can occur naturally, for example in the Santa Barbara Channel of California[99][100] or in the Gulf of Mexico off Texas.[101] Their concentration and features have been used to assess the extent of oil spills. Their composition can be used to identify their sources of origin,[102][103] and tarballs themselves may be dispersed over long distances by deep sea currents.[100] They are slowly decomposed by bacteria, including Chromobacterium violaceum, Cladosporium resinae, Bacillus submarinus, Micrococcus varians, Pseudomonas aeruginosa, Candida marina and Saccharomyces estuari.[99]


Whales[edit]

James S. Robbins has argued that the advent of petroleum-refined kerosene saved some species of great whales from extinction by providing an inexpensive substitute for whale oil, thus eliminating the economic imperative for open-boat whaling.[104]


Alternatives to petroleum[edit]

Further information: Renewable energy

In the United States in 2007 about 70 percent of petroleum was used for transportation (e.g. gasoline, diesel, jet fuel), 24 percent by industry (e.g. production of plastics), 5 percent for residential and commercial uses, and 2 percent for electricity production.[105] Outside of the US, a higher proportion of petroleum tends to be used for electricity.[106]


Alternatives to petroleum-based vehicle fuels[edit]

Main articles: Alternative fuel vehicle, Hydrogen economy, and Green vehicle


Brazilian fuel station with four alternative fuels for sale: diesel (B3), gasohol (E25), neat ethanol (E100), and compressed natural gas (CNG)

Alternative fuel vehicles refers to both:


Vehicles that use alternative fuels used in standard or modified internal combustion engines such as natural gas vehicles, neat ethanol vehicles, flexible-fuel vehicles, biodiesel-powered vehicles, propane autogas, and hydrogen vehicles.

Vehicles with advanced propulsion systems that reduce or substitute petroleum use such as battery electric vehicles, plug-in hybrid electric vehicles, hybrid electric vehicles, and hydrogen fuel cell vehicles.

Alternatives to using oil in industry[edit]

Biological feedstocks do exist for industrial uses such as Bioplastic production.[107]


Alternatives to burning petroleum for electricity[edit]

Main articles: Alternative energy, Nuclear power, and Renewable energy

In oil producing countries with little refinery capacity, oil is sometimes burned to produce electricity. Renewable energy technologies such as solar power, wind power, micro hydro, biomass and biofuels are used, but the primary alternatives remain large-scale hydroelectricity, nuclear and coal-fired generation.


Future of petroleum production[edit]


US oil production and imports, 1910-2012

Consumption in the twentieth and twenty-first centuries has been abundantly pushed by automobile sector growth. The 1985–2003 oil glut even fueled the sales of low fuel economy vehicles in OECD countries. The 2008 economic crisis seems to have had some impact on the sales of such vehicles; still, in 2008 oil consumption showed a small increase.


In 2016 Goldman Sachs predicted lower demand for oil due to emerging economies concerns, especially China.[108] The BRICS (Brasil, Russia, India, China, South Africa) countries might also kick in, as China briefly was the first automobile market in December 2009.[109] The immediate outlook still hints upwards. In the long term, uncertainties linger; the OPEC believes that the OECD countries will push low consumption policies at some point in the future; when that happens, it will definitely curb oil sales, and both OPEC and the Energy Information Administration (EIA) kept lowering their 2020 consumption estimates during the past five years.[110] Oil products increasingly compete with alternative sources, mainly coal and natural gas, both cheaper sources. Production will also face an increasingly complex situation; while OPEC countries still have large reserves at low production prices, newly found reservoirs often lead to higher prices; offshore giants such as Tupi, Guara and Tiber demand high investments and ever-increasing technological abilities. Subsalt reservoirs such as Tupi were unknown in the twentieth century, mainly because the industry was unable to probe them. Enhanced Oil Recovery (EOR) techniques (example: DaQing, China[111] ) will continue to play a major role in increasing the world\'s recoverable oil.


The expected of available petroleum resources has always been around 35 years or even less since the start of the modern exploration. The oil constant, a insider pun in the German industry refers to that effect.[112]


Peak oil[edit]

Main article: Peak oil


Global peak oil forecast

Peak oil is the projection that future petroleum production (whether for individual oil wells, entire oil fields, whole countries, or worldwide production) will eventually peak and then decline at a similar rate to the rate of increase before the peak as these reserves are exhausted. The peak of oil discoveries was in 1965, and oil production per year has surpassed oil discoveries every year since 1980.[113] However, this does not mean that potential oil production has surpassed oil demand.


Hubbert applied his theory to accurately predict the peak of U.S. conventional oil production at a date between 1966 and 1970. This prediction was based on data available at the time of his publication in 1956. In the same paper, Hubbert predicts world peak oil in \"half a century\" after his publication, which would be 2006.[114]


It is difficult to predict the oil peak in any given region, due to the lack of knowledge and/or transparency in accounting of global oil reserves.[115] Based on available production data, proponents have previously predicted the peak for the world to be in years 1989, 1995, or 1995–2000. Some of these predictions date from before the recession of the early 1980s, and the consequent reduction in global consumption, the effect of which was to delay the date of any peak by several years. Just as the 1971 U.S. peak in oil production was only clearly recognized after the fact, a peak in world production will be difficult to discern until production clearly drops off.[116] The peak is also a moving target as it is now measured as \"liquids\", which includes synthetic fuels, instead of just conventional oil.[117]


The International Energy Agency (IEA) said in 2010 that production of conventional crude oil had peaked in 2006 at 70 MBBL/d, then flattened at 68 or 69 thereafter.[118][119] Since virtually all economic sectors rely heavily on petroleum, peak oil, if it were to occur, could lead to a \"partial or complete failure of markets\".[120] In the mid-2000s, widespread fears of an imminent peak led to the \"peak oil movement,\" in which over one hundred thousand Americans prepared, individually and collectively, for the \"post-carbon\" future.[121]


Unconventional production[edit]

The calculus for peak oil has changed with the introduction of unconventional production methods. In particular, the combination of horizontal drilling and hydraulic fracturing has resulted in a significant increase in production from previously uneconomic plays.[122] Analysts expect that $150 billion will be spent on further developing North American tight oil fields in 2015. The large increase in tight oil production is one of the reasons behind the price drop in late 2014.[123] Certain rock strata contain hydrocarbons but have low permeability and are not thick from a vertical perspective. Conventional vertical wells would be unable to economically retrieve these hydrocarbons. Horizontal drilling, extending horizontally through the strata, permits the well to access a much greater volume of the strata. Hydraulic fracturing creates greater permeability and increases hydrocarbon flow to the wellbore.


See also[edit]

icon Energy portal

Barrel of oil equivalent

Filling station

Gas oil ratio

List of oil exploration and production companies

List of oil fields

Manure-derived synthetic crude oil

Natural Gas

Oil burden

Petroleum geology

Thermal depolymerization

Total petroleum hydrocarbon

Waste oil



Buy Now

Other Related Items:



Related Items:

UNUSED Vintage BARDAHL ADD IT TO YOUR MOTOR OIL Can Shaped LARGE Window Decal picture

UNUSED Vintage BARDAHL ADD IT TO YOUR MOTOR OIL Can Shaped LARGE Window Decal

$29.99



Bardahl Top Oil and Valve Lubricant Full Can Original Vintage .35 cents Read picture

Bardahl Top Oil and Valve Lubricant Full Can Original Vintage .35 cents Read

$24.99



Oil BARDAHL XTC C60 10W-40- 4 Lt Beverly V-Strom-Burgman-Fly picture

Oil BARDAHL XTC C60 10W-40- 4 Lt Beverly V-Strom-Burgman-Fly

$169.50